MISSION : Forces and friction	Mission Code:	
Date :	Name:	

What forces are pulling or pushing on the sled in the picture? Draw an arrow that shows the direction that the force is pulling or pushing on the sled.

Experiment 1:

Attach the cord to the hook on the box, fix the pulley on the table and lay the cord on the pulley.

Hypothesis: What do you think will happen when more washers are added to the hook?

Label the different object on this experiment:

1

Add washers to the hook. Try this three times with different numbers of washers.

Number of washers on hook	How does the box move? (circle one)		
0	Stays still	Speeds up a little	Speeds up a lot
1	Stays still	Speeds up a little	Speeds up a lot
2	Stays still	Speeds up a little	Speeds up a lot

When more washers are put on the hook, the **force** is (circle one) stronger / weaker / the same.

Experiment 2:

Use 2 washers on the hook.

How can you make the box move more slowly than it did for 2 washers in Experiment 1? Write down some ideas.

Observations:

Change made	How does the box move compared to Experiment 1?

Experiment 3:

Using the same number of washers on the hook, add washers into the box on the table. Try this three times with a different number of washers each time.

Number of washers on the hook: _____ (write a number)

Number of washers in the box	How does the box move? (circle one)		
2	Stays still	Speeds up a little	Speeds up a lot
4	Stays still	Speeds up a little	Speeds up a lot
6	Stays still	Speeds up a little	Speeds up a lot

The number of washers in the cup is the same, so the force is (circle one) the same / different for all the trials. The motion of the box (circle one) changes more / changes less / stays the same when there are more washers in it.

Experiment 4:

How does the table feel?	Soft	Rough	Smooth
How does the sandpaper feel?	Soft	Rough	Smooth

Number of washers on the hook: _____ (write a number)

Number of washers in the box: _____ (write a number)

Compare the box's motion on the table and sandpaper			oaper
The box's motion changed more when using:	table	sandpaper	the same for both
The force from the hanging washers is larger when using:	table	sandpaper	the same for both
The friction is larger when using:	table	sandpaper	the same for both
The total force on the box is larger when using:	table	sandpaper	the same for both

Mission Completed Stamp!	